Acta Cryst. (1964). 17, 931

Report on the crystal structure of Gd_6Mn_{23}. By FREDERICK E. WANG, JOHN V. GILFRICH, DONALD W. ERNST and WILLIAM M. HUBBARD, U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, U.S. A.

(Received 9 September 1963 and in revised form 26 December 1963)

 $GdMn_2$ (Laves phase) is the only intermediate phase in the Gd-Mn system whose structure has been definitely characterized (Endter & Klemm, 1943). In the course of a study of the magnetic properties of alloys of Gd with some of the transition elements (Hubbard, Adams & Gilfrich, 1960) we found it necessary to carry out structure determinations on these alloys to support the magnetic study. This is a partial report of that structure investigation.

Initial investigation of the alloy containing 62.3 wt.% (81.6 at.%) Mn by the powder method (using a counterdiffractometer) showed the possibility of indexing the pattern based on a face-centered cubic cell with a lattice constant of $a_0 = 12.5$ Å. However, the study of the Gd–Mn system by various authors (Nassau, 1959; Klemm, 1948; Moriarty & Baenziger, 1959; Nassau, Cherry & Wallace, 1960) revealed no cubic phase in this composition range of the system. Therefore, it was decided to carry the investigation further by single-crystal methods. A single crystal of irregular shape (best approximated as spherical) with an average diameter of approximately 0.10 mm was picked out of the alloy matrix. Even though there were obvious advantages in using a Mo $K\alpha$ radiation, a few initial Weissenberg photographs showed this to be impractical owing to the large cell constant. By the use of Cu $K\alpha$ (Ni-filtered) radiation and the equi-inclination method, zero through 6th layer Weissenberg photographs were obtained. The observation of the regular absence of mixed odd and even Miller indices and the m3m diffraction symmetry confirmed the crystal structure, face-centered cubic, as previously indicated in the powder pattern. From a zero-layer Weissenberg photograph which had been calibrated against superimposed NaCl lines ($a_0 =$ 5.6394 Å assumed) a lattice constant of $a_0 = 12.578 \pm$ 0.003 Å was obtained.

At this time, the structure of Th_6Mn_{23} (Florio, Rundle & Snow, 1952) came to our attention. The closeness of the two compounds, in their atomic radius ratio (1.32 for (Th/Mn) and 1.31 for (Gd/Mn)) and in their lattice constants, $(a_0 = 12.523 \text{ Å for } \text{Th}_6 \text{Mn}_{23} \text{ and } a_0 = 12.578 \text{ Å}$ for the present compound), and the fact that both compounds are face-centered cubic, strongly suggested that the two compounds are isostructural. Estimation of the relative intensities of a total of 116 symmetry independent reflections was achieved by the multiple-film technique and a standard scale made from the same crystal. Owing to the irregular shape of the crystal, several of the diffraction data, such as 200, 220, 311 etc., which fall in the extreme high absorption area (detectable by the shade of the background) were rejected even though they were observed*. After the usual Lorentz-polarization and absorption corrections were applied to the estimated intensities, the observed $|F_o|^2$ values were correlated and scaled statistically. Based on the average diameter, 0.10 mm, of the crystal and the atomic composition of Gd:Mn = 6:23, the spherical absorption correction ($\mu R = 13 \cdot 1$; extrapolation of the table given in *International Tables* for X-ray Crystallography, 1959) was applied*. Subsequently the space group, Fm3m, and the atomic positions given for Th₆Mn₂₃ by Florio *et al.* (1952) were used as the starting point for a least-squares refinement. After four cycles of isotropic least-squares refinement in which the over-all temperature factor, $B_0 = 1.6$ obtained from the Wilson (1942) plot was held constant (because of the possible erroneous refinement due to the high absorption) an R(F), $\{\Sigma ||F_0| - |F_c|| / \Sigma |F_0|\}$, of 0.13 was obtained. This confirms that the present compound is isostructural with Th₆Mn₂₃ and its formula is therefore Gd₆Mn₂₃.

The final atomic parameters are given in Table 1 and

Table 1. Atomic positions and parameters in Gd_6Mn_{23} .

Standard deviation of the parameters (Å), in parenthesis Space group Fm3m

24 Gd	\mathbf{in}	(e)	with $x = 0.1954 \pm 0.0014$	(± 0.017)
4 Mn	\mathbf{in}	(b)	special positions	• •
24 Mn	\mathbf{in}	(d)	special positions	
32 Mn(1)	\mathbf{in}	(f)	with $x = 0.1778 \pm 0.0020$	(± 0.025)
32 Mn(2)	\mathbf{in}	(f)	with $x = 0.3759 \pm 0.0019$	(± 0.024)

 Table 2. Observed and calculated structure factors of

 Gd_eMn_ex.

н к	Fo F	'с н	к	Fo	Fc	н	ĸ	F.	Fc
$\begin{array}{c} 1 \\ 4 \\ 6 \\ 8 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	202 123 10 15 127 127 129 121 129 123 122 123 10 122 122 123 14 122 123 14 14 122 123 14 14 122 14 14 122 135 15 14 10 10	577911 1357911357911391 135911144680012468012446800000000000000000000000000000000000	۲۵۸۸۶۶٬۵۵۲٬۵۵۳٬۵۵۶٬۵۵۶٬۵۵۶٬۵۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶	14611626745103827268 2228 12279425275509905330772655 241639735509905330772655 24163911311 11191	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	799911 13311 144100 10012 10000 100000000		47 25 42 42 42 42 42 42 42 42 42 42	-50291-46733 2002-67652521460 322613522212 -1033 1602-67652521460 322614522212 -105050-12652522412 2529157405491 -90509157405491 -90509157405491

^{*} These actions were deemed justified in view of the fact that the objective of the present work is to prove that Th_6Mn_{23} and the present compound are isostructural, and is not an original structure determination.

the observed $|F_o|$ values are compared with the calculated F_c values in Table 2. The density of the compound was found by the displacement method (in water and in air) to be 7.39 g.cm⁻³. This value compares favorably with the calculated value, 7.36 g.cm⁻³, based on four Gd₆Mn₂₃ units per unit cell. This then, adds another member to the family of A₆B₂₃-type compounds which includes Th₆Mn₂₃ (Florio *et al.*, 1952), Sr₆Li₂₃ (Wang, King & Kanda, 1962) and Sr₆Mg₂₃, Ba₆Mg₂₃ (Gladyshevskii, Kripyakevich, Kuzma & Teslyuk, 1962; Wang, Kanda, Miskell & King, 1963).

References

- ENDTER, F. & KLEMM, W. (1943). Z. anorg. chem. 252, 377.
- FLORIO, J. V., RUNDLE, R. E. & SNOW, A. I. (1952). Acta Cryst. 5, 449.
- GLADYSHEVSKII, E. I., KRIPYAKEVICH, P. I., KUZMA, YU. B. & TESLYUK, M. YU. (1962). Soviet Physics Crystallogr. 6, No. 5, 615.

- HUBBARD, W. M., ADAMS, E. & GILFRICH, J. V. (1960). J. Appl. Phys. 31, 5, 3685.
- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.
- KLEMM, W. (1948). Naturforschung und Medizin in Deutschland (1939-1946). Vol. 25, part III, 255. Wiesbaden: Dietrich'sche Verlagshandlung.
- MORIARTY, J & BAENZIGER, N. (1959). Paper given at the Rare Earth Symposium, Annual Meeting of Amer. Soc. Metals, Chicago.
- NASSAU, K. (1959). Ph.D. Thesis, Univ. of Pittsburgh, U.S.A.
- NASSAU, K., CHERRY, L. V. & Wallace, W. E. (1960). Phys. Chem. Solids, 16, 123.
- WANG, F. E., KING, A. J. & KANDA, F. A. (1962). J. Phys. Chem. 66, 2142.
- WANG, F. E., KANDA, F. A., MISKELL, C. F. & KING, A.J. (1963). Acta Cryst. Submitted for publication.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 152.

Acta Cryst. (1964). 17, 932

The crystal data for sodium carbonate decahydrate. By H. S. DUNSMORE and J. C. SPEAKMAN, Chemistry Department, The University, Glasgow, W. 2, Scotland

(Received 19 March 1964)

Dr J. W. Visser (of Technisch-Physische Dienst T.N.O. en T.H., Delft) has kindly informed us of the results of his accurate determination of the crystal data for Na₂CO₃.10 H₂O. This has drawn our attention to a mistake in transcription which led to errors in the b parameter and space-group symbol reported by us (Dunsmore & Speakman, 1963), as well as to a possible source of confusion affecting the crystal data for this substance. Because it is pseudo-hexagonal, there are three very similar choices of a and c axes. These are listed in Table 1 on the basis of our own (corrected) measurements. Cell (i), which has the value of β nearest to 90°, is that chosen by Visser, whose parameters are given in the last column. Cell (ii) is the one adopted in our note, with an emendation of space-group symbol. Cell (iii) corresponds most closely with the axial ratios

and β value recorded by Groth (Vol. II, 1908), as is seen by comparing the figures in columns 5 and 6. (We have chosen the centrosymmetric space group No. 15, instead of No. 9, because the goniometric data imply the point group 2/m.) D_x is now 1.460.

We are indebted to Dr Visser for permission to publish his results for the decahydrate, and also parameters for Na₂CO₃.7 H₂O (a = 19.498, b = 7.0157, c = 14.483 Å) which agree well with our own.

Reference

DUNSMORE, H. S. & SPEAKMAN, J. C. (1963). Acta Cryst. 16, 573.

Ratios (Groth) (i) (ii) (iii) (iii) Visser 12.7611.41651.4186 12.57112.76112.754a b 9.009 9.0099.009 1 9.009 1 1.482812.57113.47013.4701.495112.597С 121° 26' 122° 48' 115° 46' 122° 20' 115° 51' в _ s.G. C2/cI2/aC2/cC2/c

Table 1. Crystal data for Na_2CO_3 . $10H_2O$, with translations in Å